- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kjolstad, Fredrik (2)
-
Sundram, Shiv (2)
-
Aiken, Alex (1)
-
Bauer, Michael (1)
-
Garland, Michael (1)
-
Lee, Wonchan (1)
-
Tariq, Muhammad Usman (1)
-
Yadav, Rohan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 30, 2026
-
Sundram, Shiv; Tariq, Muhammad Usman; Kjolstad, Fredrik (, Proceedings of the ACM on Programming Languages)We present a framework for compiling recurrence equations into native code. In our framework, users specify a system of recurrences, the types of data structures that store inputs and outputs, and scheduling commands for optimization. Our compiler then lowers these specifications into native code that respects the dependencies in the recurrence equations. Our compiler can generate code over both sparse and dense data structures, and determines if the recurrence system is solvable with the provided scheduling primitives. We evaluate the performance and correctness of the generated code on several recurrences, from domains as diverse as dense and sparse matrix solvers, dynamic programming, graph problems, and sparse tensor algebra. We demonstrate that the generated code has competitive performance to hand-optimized implementations in libraries. However, these handwritten libraries target specific recurrences, specific data structures, and specific optimizations. Our system, on the other hand, automatically generates implementations from recurrences, data formats, and schedules, giving our system more generality than library approaches.more » « less
An official website of the United States government
